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by Peter M. Sockol 

Lewis Research Cen te r  

SUMMARY 

The integral equation approach to the solution of the Boltzmann equation has been ap- 
plied to the flow of electrons through a rarefied gas between plane parallel electrodes. A 
perfect Lorentz gas model is assumed. 
equation with Poissonfs equation have been obtained for ratios of electrode spacing to 
mean free path of 0, 0. 5, 1, and 2.  Density and potential curves together with current- 
voltage character istics a r e  presented. 

Self-consistent-field solutions of the Boltzmann 

INTRODUCTION 

The flow of charged particles between an electrode and an ionized gas has attracted 

Some 
the attention of several investigators since the early work of Langmuir. 
studies have been concerned with the theory of electrostatic probes (refs. 1 to  9). 
work, however, has been done in connection with the analysis of thermionic converters 
(refs. 10 and 11). All these treatments have involved one of two approaches. In the first ,  
either collisionless or diffusion equations (depending on the density range of interest) 
have been applied continuously from the electrode to the undisturbed portion of the gas o r  
to another electrode. In the second, the space has been divided into two or more distinct 
regions; appropriate equations, either collisionless o r  diffusion, have been applied in 
each region, and more or  less arbitrary conditions have been used to match solutions at 
the boundaries between regions. 

In situations where collisions a r e  important, both of these approaches a r e  question- 
able. There will inevitably be a transition region, however brief in extent, in which 
neither collisions nor particle dynamics may be considered as dominant. From the ex- 
periences of investigators studying this regime in ordinary gas dynamics, it would seem 
that no simple solvable model is generally valid here. Hence, in the present work, an 

Most of these 
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attack is made on the problem by means of the Boltzmann equation. Rather than treating 
the problem in all its complexity, however, a simpler problem was treated as completely 
as possible, namely, the flow of electrons through a rarefied gas between parallel elec- 
trodes. Taking one of the electrodes to be thermionically emitting and the other cold al- 
lows some of the aspects of flow between an ionized gas and a cold electrode to be re- 
tained. The next steps would be the inclusion of positive ions and then the substitution of 
an ionized gas for the hot electrode. 

Possible methods for solving the Boltzmann equation for such a boundary value prob- 
lem are provided by the half-range polynomial method of Gross, Jackson, and Ziering 
(ref. 12) and the discrete ordinate method of Chandrasekhar (ref. 13). The inclusion of 
a spatially varying electric field,. however, makes these methods intractible. Instead, 
the original integro-differential equation is converted to a pure integral equation and is 
solved numerically. The method is similar to that used by Willis to solve the Krook 
kinetic model for shear flow (ref. 14). 

using Monte Carlo techniques (ref. 15). While the present method is perhaps somewhat 
more difficult to apply, it offers the advantage of obtaining information about the distribu- 
tion function itself. 

The particular problem considered herein has been treated recently by Goldstein, 

FORMULATION 

The problem under consideration is that of the steady flow of electrons between infi- 
nite plane-parallel electrodes. The Boltzmann equation for the electron distribution 
function 7 may be written as (ref. 16) 

where E, V cos 0, and 
mal to the electrodes. 

are, respectively, distance, velocity, and acceleration nor- 
For electrons interacting with the space charge field 

- e dV 
””=; g. 

where V is the electrostatic potential. Bars  have been used to designate dimensional 
quantities. 

For electrode separations that are not too large compared with the mean free path, 
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the loss of energy by electrons due to elastic collisions with atoms is negligible. In addi- 
tion, all inelastic and electron-electron collisions are neglected. The collision term in 
equation (1) thus reduces to that for a perfect Lorentz gas (ref. 17): 

where N is the atom density, u the differential scattering cross  section, x the scatter- 
b ing angle, and dw' the element of solid angle. Primes refer to values after a collision. 

The number density and the particle current are given in terms of f by 

-2 - - n = 2 n l m L ' T s i n 8 d 8 v  dv 

and 

-3 - J = 27~ Am J' Tcos 8 sin 0 d0 v dv 
- 

Equations (1) to (4) are to be solved self-consistently with Poisson's equation 

(4) 

The boundary conditions on the distribution function T a r e  of a rather peculiar na- 
ture; f is not completely known on one surface in phase space, such as that specified 
by x = 0. The number of particles of a given velocity returned to a surface by back 
scattering from the gas is not known a priori. 
at each of two bounding surfaces, 5 = 0 and x = L. Hence, with half-Maxwellian emis- 
sion of electrons at X =  0 and complete absorption of electrons at both x = 0 and 
the boundary conditions on T and v are 

Instead, the emergent half of is known 

= L, 

v(0) = 0, V(L) = vc J 
3 

I 
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where Go and To are the density and temperature of the emitted electrons, L the elec- 
trode spacing, and Vc the potential of the cold collector. 

Before proceeding further, it is necessary to assume that the differential scattering 
cross  section remains finite for small scattering angles x. Then the collision integral, 
equation (3), may be separated into two finite integrals. The cross  section can then be 
approximated by a finite sum of Legendre polynomials in cos x, and then in turn, ex- 
pressed in terms of cos 0 and cos 0' by means of the addition theorem for spherical 
harmonics. This procedure would assume more information than is generally available 
on electron-atom cross sections. Hence, in the present work, a is assumed independent 
of x. Equation (3) is rewritten as 

4 

wher the mean fr e path h is given by 

h - l  = 47rNa 

and the element of solid angle dw' has been expressed as 

dw' = 277 sin 0' do' 

Dimensionless variables are now introduced: 

- 
eV 

7 p = c o s 0 ,  c p = -  
kTO 

X x = -  
L 

v2 1/2 2- 2 
2 2  47re noL 

K = - ,  L c =  =8(-&-) m e JoL 
x kTO 

(9) 

Equations (l), (2), and (8) a r e  combined as 
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and equations (4) to (7) become 

dx2 

-v2 1 x = O ,  p > O ,  f = e  

The transformation of equation (11) to an integral equation is accomplished by means 
of a change of variables from (x, v, p)  to (x, w, u) where 

The nondimensional total energy of an electron is denoted by w, and u is the nondimen- 

and u are constants of the motion between collisions. Since f is a double valued function 

(15), g* is defined by 

9 sional portion of the total energy associated with the motion in the x-direction; thus, w 

t of u, f is denoted by ff for p < 0. Finally, with note taken of the boundary conditions 

(17) 
-w f f * = e  g 

Then equations (11) to (13) become 
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with 

The boundary conditions (15) become 

+ x = o , g  = 1  

Equation (18) is formally integrated to give 

(23) 

The first term in equation (24) is the contribution to the distribution function from parti- 
cles that have not suffered collisions; it decays exponentially as the ratio of the path 
length to the mean free path. The second term represents the contribution from parti- 
cles scattered into a particular ??volume?? element in phase space. The A* and x: 

6 

- .. . . 



Figure 1. - Diagram of u,x plane. 

are arbitrary functions of w and u. They are 
to be determined from the boundary conditions 
(23) together with continuity considerations at 
turning points for electrons in the electric field 
(see following section). Note that, in general, 
K will be a function of (w + q (x)) . 

g*, as S(x, w) is functionally dependent on g. 
1 A single linear integral equation for S(x, w) may 

be obtained by eliminating g* between equations 
(22) and (24). 

Equation (24) is an integral equation for 

-X 

ELECTRON FLOW WITH POTENTIAL MINIMUM 

The equations of the previous section a r e  now applied to a situation in which a poten- 
tial minimum occurs within the interelectrode space. All other rea l  situations can be 
obtained as special cases of this one by defining the potential minimum to be the point of 
lowest potential in the system even when this occurs at one of the electrodes. 

Consider now the diagram (fig. 1) of the u ,x  plane for a given value of w. From 
equation (16), it is seen that u 1 -cp(x), and thus the surface u = -q(x) is a lower bound- 
ary for the phase space. At this surface, electrons in region I are reflected and transfer 
from g' to g-; the opposite is t rue for region II. 
that g+ = g- on this surface. 

Conservation of electrons requires 
The complete conditions on g* a r e  as follows: 

For O s x I \ ,  - ~ ( X ) I W I  - qm, -cp(x) I u 5 w (region I), 

1 7  x = 0, g+ = 

x = x t , g  - = g  +I 
I For 0 5 x 5 xm, -qm I w -= 00, -q(x) 5 u 5 -qm (region I), 

b I + x = o , g  = 1  

x = Xt, g- = g+J 
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For x, 5 x 5  1, -9m - w -= 03, -q (x )  5 u I -qm (region II), 

x =  1, g- = o  

x = Xt, g+ = g 

For 0 5 x 5 1, -qm 5 w -= 03, -9, 5 u 5 w (region m), 

1 x = o ,  g+= 1 

x =  1, g- = o  

where 

The points xt(u) are turning points for electrons of ?*energy*’ u in the electric field. 
Condition (25) is the same as condition (26) and is not considered separately. Appli- 

cation of the conditions to equation (24) gives the following equations: 

For 0 5 x 5 xm, -q(x) 5 u 5 -40, (region I), 

K 

Jucpo 
7 1 
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For xm 5 x 5 1, -cp(x) I u 5 -cpm (region II), 
r 1 

For 0 5 x 5 1, -qm 5 u 5 w (region III), 

Examination of equations (30) to (32) shows that there a r e  discontinuities in g- be- 
tween regions I and III and in g+ between regions 11 and III. These discontinuities a r e  
permissible, however, as u = -qm is a characteristic surface for the original integro- 
differential equation (11). 

interchanging the order of the u and y integrations gives a Fredholm integral equation 
for S(x, w). Care must be taken in interchanging the order of integration, as xt is a 
function of u. For example, 

* Substitution of equations (30) to (32) into equation (22), which defines S(x, w), and 

4 

- Lqb(x) LXt dy du = lxb[cpb(y) du dy 
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where 

The integral equation may be written as 

where 

2 
+I l exp 

and 

Ka! (Z)& LX K a ! ( Z ) d z  LY (36) 
du 

mm 
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From equations (36) and (39), it may be seen that H(x,y,w) is symmetric in x and y. 

for the density may be rewritten as 
For x =- xm, the distribution function vanishes for w -= -qm. Hence, equation (19) 

n = L  /" e-WS(x, w)dw 
IL af 

The current is most conveniently evaluated at the emitter (x = 0). Only those elec- 
trons whose energy w =- -qm can contribute to the current; hence, substitution of equa- 
tions (30) and (32) for g* into equation (20) and interchanging the order of the u and y 
integrations give 

N UME R IC AL I NTEG RAT1 0 N 

The solution of equation (33) presents certain difficulties as the kernel H(x, y, w) is 

On deleting the w, equation (33) may be written as 
singular for y = x. The following method, however, proved to be quite satisfactory. 



Now as y - x for x # xm 

(43) ~ ( x ,  y) - - log(lx - y 1) + const + - - - 
This fact is utilized to replace equation (42) by a system of linear algebraic equations. 
Equation (42) is rewritten as 

with 

The integral in equation (44), whose integrand is everywhere finite, is replaced by a 
quadrature sum 

and the equation is evaluated at each of the quadrature points to give the desired set of 
algebraic equations 

n 
1 S. = F. + - G..S.  

1 1  1J J 2 j=1 
(i = 1, ., n) (47) 

where 

si = S(Xi) 

Fi = F(xi) 
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and 

(j  = i) 

This limit can be found numerically. 
The set  of equations (47) can be solved by standard techniques. As H(x, y) is sym- 

metric in x and y, the set  may be rearranged into a form with a symmetric matrix. 
Care must be taken in the choice of the quadrature formula (46). The function F(x) has 
a large negative derivative (in some cases infinite) at x = 0. 
racy from the approximation (eq. (46)), the quadrature points must be grouped closely 
together near x = 0. In the present calculations, this was accomplished by subdividing 
the range of integration into two parts and applying Gaussian quadrature formulas in each 
section. The point of subdivision was taken quite close to x = 0. 

The complete calculational procedure can be outlined as follows. An initial potential 
distribution was  assumed. Equations (47) were solved for S(x, w) for selected values of 
w, and the density n(x) was  obtained from equation (40). By means of various curve- 
fitting techniques, a Chebyshev ser ies  was  fitted to n(x), and the potential q ( x )  was ob- 
tained from Poisson's equation (14) by analytically integrating the Chebyshev series.  
This Picard iteration sequence was continued with the new potential for q(x) until con- 
vergence was achieved. The current was then obtained from equation (41) with values 
from the final iteration. Solutions from the collisionless case were used as initial iter- 
ates for cases with low values of K .  As collisional results became available, they were 
used as initial iterates for cases with higher values of K. 

To achieve sufficient accu- 

RESULTS 

The equations have been solved on a high-speed computer for the case of rigid 
sphere scattering (K constant). The particular solutions were for K = 0, 0. 5, 1, and 2 
with C (eq. (14)) = 50. An emitter temperature of 1900' K, a spacing of 10 microns, 
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Figure 2. -Variat ion of density and potential in interelectrode space. 
In i t ia l  slope, @Yo) = 0; space charge parameter, C = 50 (eq. (14)). 

and an emission current of 10 amperes per square centimeter would give a value for C 
of about 50. 

Figure 2 shows the variations of density and potential, respectively, with x and K 

for the potential with an initial slope cp'(O), of 0. The steep initial slopes in the den- 
sity curves reflect the similar behavior in the function F(x, w) of equation (35). 

Figure 3 shows the current-voltage characteristics obtained as the result of many 
solutions of the combined equations. The agreement between the present results and 
those of Goldstein (ref. 15) is of a peculiar form. While the points appear to lie on the 
same curve, attention must be given to the manner in which these points were obtained. 
In both calculations, cp and gar were specified at x = 0; nevertheless, Goldstein's 
points lie somewhat to the left of those obtained in this work for the same conditions. 
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Figure 3. - Effect of electron scattering on  current-voltage characteristics. Space charge parameter, C = 50 (eq. (14)). 

This discrepancy is well outside the standard deviation of the Monte Carlo calculation at 
the low end of the current-voltage characteristic. 
numerical difficulties in one or both of the treatments. 

The difference is probably due to  

CONCLUSIONS 

The integral equation approach to the solution of the Boltzmann equation has been 
demonstrated for a problem of electron flow through a rarefied gas over distances com- 
parable to the electron mean free path. The method should be capable of extension to 
more complicated problems including the flow of charged particles between an electrode 
and an ionized gas. 
function itself, it could be used as the basis of an investigation into approximate methods 
of solving these types of problems. 

In addition, as the method provides information about the distribution 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, March 7, 1966. 
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APPENDIX - SYMBOLS 

integration limit (eq. (38)) 

integration limit (eq. (39)) 

quadrature weight (eq. (46)) 

acceleration 

integration limit (eq. (37)) 

space charge parameter 

(es. (14)) 

electronic charge 

inhomogeneous function if 
integral equation 

distribution function 

matrix (eq. (48)) 

transformed distribution 
function 

limit function (eq. (49)) 

kernel of integral equation 

dimensionless cur rent 

electrode spacing 

logarithmic integral (eq. (45)) 

electronic mass 

atom density 

electron density 

electron emission density 

source function (eq. (22)) 

electron emission tempera- 
tur e 

dimensionless energy varia- 
ble (eq. (16)) 

potential 

V velocity 

W dimensionless energy variable 

(es. (16)) 

X distance 

X. quadrature point 
J 

turning points (eq. (29)) 

integration limit (eq. (42)) 
xt, xw 

x1 
a! (4 function (eq. (21)) 

e 
K 

polar angle in velocity space 

ratio of spacing to mean free 
path 

x mean free path 

P cos 8 

U@? x) 

cp (x) 

collision cross  section 

dimensionless potential 

X scattering angle 

0 solid angle 

Subscripts : 

C at collector 

m at potential minimum 

Super scripts : 

+ flow toward collector 
- 

flow toward emitter 
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